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Abstract

Software variability modeling is a complex task. To
manage this complexity, we introduce an approach called
Svamp. The main contribution of Svamp is to model con-
cepts through ontologies and offer tool support for captur-
ing functional and quality variability in software product
family architectures. Variability description languages are
defined by different ontologies that provide meta-models.
For structural and functional descriptions, the concepts,
properties, and rules are defined by Kumbang ontology.
Quality Attribute ontology defines the domain knowledge of
a specific quality attribute, while Quality Variability ontol-
ogy provides the concepts and rules related to quality vari-
ation. The approach is exemplified by our integrated tool
suite, provided as a plug-in for the Eclipse platform.

1. Introduction

Variability is the ability of software to be efficiently ex-
tended, changed, customized, or configured for use in a par-
ticular context [23]. Typically, variability is defined in soft-
ware when software is developed for reuse. For example,
variability is defined in the assets and the architecture of
a software product family during the domain engineering
phase. The developed variability is then taken advantage
for differentiation of software. For example, defined vari-
ability in the assets of a software product family is used to
derive the different products of a software product family.
Software, which differs from other software by taking ad-
vantage of variability, is referred to as a variant.

Variability can become complex, since the number of po-
tential variants grows exponentially when new variability
is introduced. In addition, variability concerns and affects
not only functionality but also quality attributes of software.
Consequently, in order to ensure correctness of functional-
ity of a variant and predict its quality properties even in the
most complex circumstances, variability needs to be expli-

cated such that it can be efficiently managed and even au-
tomated with tool support. Toward this end, an essential
characteristic is clarity of underlying concepts for different
software artifacts. Conceptual clarity is especially impor-
tant when variability spans different software artifacts such
as requirements, architectural elements, functionality, and
quality. Such variability can even affect diverse concerns of
stakeholders in an organization.

In this paper, we discuss an approach to capturing vari-
ability of a software product family called Software vari-
ability modeling practices (Svamp). For given functional
and quality requirements, we outline concepts for modeling
the structure of features and components that contribute to
the functionality and quality attributes of the components.
The modeling concepts have been defined rigorously as on-
tologies. The feasibility of the concepts is shown with an
integrated tool suite. With the resulting model, derivation
of system variants seems feasible such that the variants ful-
fill functional and quality requirements.

The rest of the paper is organized as follows. Section 2
provides background of the method. Section 3 describes
the approach. In Section 4, the developed tool suite is in-
troduced. In Section 5, we discuss experiences and future
research. Section 6 draws conclusions.

2. Background

Software variability management has emerged recently,
especially in the area of software product families that fo-
cus on enhancing development of a set of different variants
within an organization [3]. A key issue in and a lesson
learned about the success of software product families is
that the products of a software product family follow the
same fundamental structure, referred to as a software prod-
uct family architecture [2]. Consequently, software product
family architecture seems to be especially relevant from the
point of view of variability, although other development ar-
tifacts are affected as well.

A software architecture describes the high-level structure
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of a software system. Software architecture is an impor-
tant means, for example, for performing different types of
analysis and for achieving different quality attributes, and
communication. Variability is added to software family ar-
chitecture while still retaining other key aspects of software
architecture. The state of the art and practice for managing
software architecture is based on views and viewpoints. A
view is ”a representation of a whole system from the per-
spective of a related set of concerns” [8]. The guidelines for
constructing and using a view are described in a viewpoint.
The rationale for using different viewpoints is to take into
account different stakeholder concerns, which are, in fact, a
major intention of view-based approaches.

Several modeling approaches have been proposed to ex-
press variability. Feature models [11] are one of the first
widely known approaches that take into account variabil-
ity. A feature refers to user visible characteristics of a
system. Recently, other modeling approaches peculiar to
variability have emerged, such as ConIPF [7] and decision-
oriented modeling [4]. These approaches introduce a mod-
eling method with constructs for modeling software assets
and variability within the assets.

In addition, different approaches to modeling variability
in existing models of software assets have emerged. For ex-
ample, orthogonal variability modeling [19] augments ex-
isting models with variability specific information. Cova-
mof [22] augments existing models with a variability spe-
cific model and another model that captures dependencies
of a variability model. The methods can therefore be used in
conjunction with any software artifact such as requirements
or detailed design, or with any architectural viewpoint.

The modeling concepts, however, focus typically on
functionality or structure of software. Quality attribute vari-
ability, especially at the architectural level, seems still to be
a research challenge [13].

3. Svamp modeling concepts

The Svamp approach is to model functional and quality
variability at the architectural level. The approach adheres
to state-of-the-practice in architecture description by apply-
ing different viewpoints. More specifically, a feature and
structural viewpoint specifies the structure and functional-
ity, and also variability within these. The structural view-
point is also referred to informally as a component view-
point. The elements in a structural viewpoint, that is, its
components, are then augmented with quality attributes and,
further, quality variability information. The architectural
level was selected in the present approach since it seems to
be especially significant for variability, as argued above.

Consequently, the approach uses several integrated mod-
els to model a software product family (Figure 1): a Kum-
bang model, consisting of structural and feature viewpoints

Figure 1. Svamp variability models and on-
tologies.

for functional and structural characteristics; a quality at-
tribute profile, consisting of a quality attribute model for
each quality attribute of the components in the structural
viewpoint of the Kumbang model; and a quality variabil-
ity model for expressing variability within these quality at-
tributes. Each of these three models is defined in its own on-
tology; the corresponding ontology provides a meta-model
for the modeling concepts.

Kumbang concepts form the basis for modeling since
other models use the components defined in a Kumbang
model; hence, the Kumbang model needs to be specified
first. Roughly, Kumbang concepts synthesize existing fea-
ture modeling methods and structural modeling of archi-
tectural components, in particular Koala [25]. Kumbang
adds explicit variability concepts into these methods and
provides formal semantics for the concepts. In the follow-
ing, we only briefly outline basic capabilities of Kumbang,
whereas a comprehensive description can be found in [1].

The feature viewpoint is used for modeling feature types,
which represent user visible functional characteristics of a
system. Kumbang uses the term ”type” to refer to an ele-
ment in the variability model, while elements referring to
a specific variant are, e.g., feature instances or simply fea-
tures. Features can be composed such that other features are
their subfeatures. Such a composition structure is specified
within a feature type using subfeature definitions, which
specify the cardinality and possible types of composed fea-
tures. Further, feature types can inherit each other. Feature
types can be characterized with attribute definitions, which
represent name/value pairs. Finally, constraints can be used
to specify more elaborate rules for selection of different fea-
ture instances; in a very simple case, by specifying that a
certain feature requires another feature. Hence, Kumbang
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feature modeling concepts synthesize many existing feature
modeling methods, and can be used to capture typical vari-
ability constructs found in other feature modeling methods.

Structural viewpoint specifies component types. A com-
ponent type represents a distinguishable architectural ele-
ment with explicitly defined interfaces. The approach is ig-
norant as to whether a component actually refers to, e.g.,
a run-time or design-time element or a specific component
technology, as far as the component adheres to this defi-
nition. Again, the term ”component type” is used in the
variability model similarly as in features. An interface type
represents a set of operation signatures; these are attached
to component types using interface definitions. Interface di-
rection is provided or required and the interface can be op-
tional. Components can be composed with each other. The
construct used for specifying component composition is a
part definition that specifies the cardinality of possible types
of composed components. Similarly to feature types, com-
ponent types can inherit each other, be characterized by at-
tribute definitions, and specify constraints that restrict how
instances in the structural viewpoint can be selected. Hence,
the variants of structural viewpoint can differ in terms of
composition of components, connections between the inter-
faces, and attribute values defined.

In order to integrate feature and structural viewpoint, im-
plementation constraints can be used to specify relation-
ships between them. In a very simple case, a specific fea-
ture may require a specific component. In general, the con-
straints can be bi-directional and impose many-to-many re-
lations between viewpoints. Consequently, the implementa-
tion constraints can be as complex as can be specified with
Kumbang constraint language [12].

To address quality attributes, the variability model needs
to be then augmented with information on its quality char-
acteristics. This is done by specifying the quality properties
using the quality attribute model (QA model) and the qual-
ity variability model (QV model), defined separately from
Kumbang (cf. Figure 1). The components of the structural
viewpoint are supplemented with relevant quality profiles.
Similarly to Kumbang, both QA model and QV model have
been defined as ontology, the former as quality attribute
(QA) ontologies and the latter as quality variability (QV)
ontology.

Each QA ontology defines the technical dimension of the
quality attribute. For example, the main concepts of the se-
curity QA ontology are security assets, attributes, threats,
solutions, and metrics (Figure 2) [20], whereas the reliabil-
ity QA ontology defines processes, methods, models, and
metrics [26]. That is, QA ontologies are quality attribute
specific, and, hence, the concepts in each ontology are dif-
ferent. QA ontologies are orthogonal and managed sepa-
rately because different expertise is required for defining
different QA ontologies. Furthermore, the concepts defined

Figure 2. The security QA ontology [12].

in a QA ontology depend on the dissected entity: in defin-
ing the security QA ontology, the focus was on information
security of service centric systems, while in the reliability
QA ontology, the focus was on reliability-aware architect-
ing. Thus, the scope of the reliability QA ontology is larger;
therefore, more concepts have been defined.

The QA metrics concept (Figure 3) consists of metrics
classes, e.g., strength metrics and weakness metrics. Con-
cepts of QA metrics are common for all quality attributes,
whereas only part of the metrics classes and actual metrics
in the metrics classes can be shared by different QA on-
tologies and the others are quality attribute specific. Each
metric has the following properties: description; purpose;
target, i.e., where the metric can be used; applicability, i.e.,
when the metric can be used; a set of formulas; range value
for the measurement; and the best value of the measurement
unit. A rule set constrains the formulas and the used mea-
surement unit by defining the set of targets of measurement,
the set of value ranges for the measurement unit, and the
time when the metric is valid.

The QV model is defined by four concepts: importance,
scope, binding time, and dependency map. The importance
of the QA is defined by three distinct property values, i.e.,
high, medium and low. The importance property is required
for making decisions on QA variation. Rules related to
the importance property define whether QA variation can
take place, for example, QA of high importance cannot be
changed at run-time or it can be lowered to the medium level
only; in what circumstances QA variation is allowed, for ex-
ample, QA of low importance can be removed while making

Proceedings VaMoS'08

91



Figure 3. Concepts related to metrics of the
QA ontology.

tradeoffs; and how quality attribute variation is to be carried
out, for example, QA has to be fixed in product derivation.
Some of the rules can be generic, but more often they are
software product family specific.

The scope defines four granularity levels for QA varia-
tion. That is, scope determines where quality attribute varia-
tion can take place by defining a set of boundary types, pos-
sible values being family, product, service, or component.
One of the values has to be selected. Scope selection re-
stricts the types of appropriate metrics and measuring tech-
niques. For example, at the family and product levels, only
those metrics intended for system-level use (cf. Target in
Figure 3) can be used. Thus, there are relations between the
QA ontologies and the QV model that are considered while
defining QA profiles by the QPE tool (see section 4.2).

Binding time defines when quality attribute variation can
take place; quality attribute can be changed at design-time,
in assembly, in start-up, or at run-time. The binding time
is needed for making design decisions and required adapta-
tions and tradeoffs, i.e., QA variation, between quality at-
tributes. Design time tradeoffs are made by determining
the optimal architecture with the help of quality evaluation
methods and supporting tools, e.g., estimating reliability
by the RAP method [9]. Run-time adaptation is made by
specific algorithms implemented as part of middleware ser-
vices. In [18], an example of run-time performance adapta-
tion is given.

The dependency map describes relations between vari-
able quality attributes. This information is required for
making tradeoffs between quality attributes. So far, meth-
ods exist for making tradeoffs at design-time but no generic
solution for making run-time tradeoffs. The QV model is
defined in more detail in [16].

4. Tool support

The Svamp approach is supported with a tool suite de-
veloped as plug-ins on the Eclipse Platform [5]. Kumbang

Modeler is used to model the structural and feature view-
point whereas Quality Profile Editor (QPE) is used to model
quality properties.

4.1. Kumbang Modeler

Kumbang Modeler [14] is a tool that can be used for cre-
ating the Kumbang model, that is, to model functional and
structural variability in a software product family architec-
ture from feature and structural points of view. The user
can specify product family features, architectural elements,
and relations between them using constraints. Kumbang
Modeler hides the complexity of concrete syntax behind a
graphical user interface (Figure 4) and guides the user in the
modeling task.

Kumbang Modeler checks the model for syntactic cor-
rectness. Further, it checks that at least one valid product
configuration can be derived from the model. That is, it
checks that all required interfaces can be connected to cor-
responding interfaces, all constraints can be satisfied, and
no cyclic loops exist in inheritance or part structures. This
checking is implemented using an efficient smodels infer-
ence engine [21], a general-purpose inference tool based on
the stable model semantics of logic programs.

After the structural and functional modeling is com-
pleted, the user of the tool can augment the model with qual-
ity profiles. For this purpose, the tool suite transforms the
relevant information of the Kumbang model into the UML2
model specified by Eclipse UML2 meta-model, which is the
format understood by the QPE plug-in. The process of us-
ing the QPE tool is described in the following.

4.2. Quality Profile Editor

The Quality Profile Editor (QPE) tool [6] takes QA on-
tologies as input. These ontologies are defined by the
quality engineers by using an ontology definition tool, e.g.
Protégé. In addition, the software family architect respon-
sible for modeling also needs a list of quality requirements.
The user interface of the QPE tool helps in instantiation of
QA ontologies. QA ontologies are imported in OWL (Web
Ontology Language) files [17] for the QPE tool.

The QPE tool produces a QA profile that instantiates the
related QA and QV ontologies and, hence, contains the de-
fined quality properties with metrics, quality variation rules,
and dependencies on other quality properties in the same
QA profile or in other QA profiles. In QA profiles, the QA
properties are defined as UML stereotypes. UML defines
profiles as a lightweight mechanism to extend the UML
meta-model for adapting the language with domain specific
constructs. These extensions are defined by stereotypes that
can also contain properties and tag definitions used to set
values to property attributes.
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Figure 4. Kumbang Modeler graphical user interface[14].

Figure 5 depicts the user interface of the QPE tool. The
left side is used to define quality properties that the family
architecture has to meet. On the right side, the architect can
select a quality property and bind an appropriate QA metric
from one of the QA ontologies to it. Finally, dependencies
on other quality properties are linked. For example in Fig-
ure 5, Req2 from Demo profile and R3 from the Reliability
profile are linked to the Rel1 property.

QA profiles are stored as separate files because of their
evolution management; new QA properties can be added
and existing ones removed without affecting other QA pro-
files. However, the software family architect is responsible
for checking dependencies between QA properties (inside
one QA profile or between the properties in different QA
profiles), because the QPE does not check dependencies au-
tomatically while the QA profiles are updated.

The stereotypes in the QA profiles are used for mapping
the QA properties to the structural elements of the family

model (Figure 6). Thus, quality properties as UML2 stereo-
types facilitate the viewpoint based approach by enabling
a separate focus on components, features, and quality at-
tributes. The only concept the family architect can select
while mapping QA properties to the architecture models is
Binding time. The reason is that the architecture design
is the earliest possible phase when a decision about tim-
ing of QA variation can be made. Mapping of QA proper-
ties to structural elements can be made with any Eclipse
UML2 compatible plug-in; in the case of Svamp it was
TOPCASED [24].

The QA property information incorporated into the mod-
els is used while evaluating the software product family
architecture. Evaluation is made using appropriate evalu-
ation tools, i.e., the evaluation tools are QA specific. The
RAP tool [10] supports reliability and availability predic-
tion from the models of software product family. Thus, to
evaluate the satisfaction of reliability aspects, UML2 mod-
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Figure 5. Defining quality properties with the QPE tool.

els produced by the TOPCASED tool are imported in the
RAP tool and QA property information used in reliability
and availability prediction.

5. Discussion and Further Work

The Svamp approach has been applied to example cases
carried out in a laboratory. So far, the following observa-
tions have been made:

Functional variability modeling supports functional and
structural views, but variability also occurs, e.g., in behavior
and deployment views. Despite being feasible for modeling
even dynamic concepts, Kumbang concepts per se are not
convenient for modeling complex behavior; hence, exten-
sions are needed.

Quality variability modeling supports security and relia-
bility modeling in regard to metrics. More exploratory work
is required for facilitating quality-aware architecting, such
as performance ontology and quality-driven adaptation of
software product families, i.e., tradeoffs made at run-time.
In addition, other execution qualities need to be considered
together with reliability and security. Further, feasibility of
modeling different quality attributes and analyzing them de-
sign time needs to be studied in more depth.

As a result of the common tooling platform, tools are in-
dependent modules that can be integrated with other tools
that conform to the Eclipse Platform and UML2. However,
the tool suite needs further improvement, especially in re-
gard to interoperability and automatic transformation of dif-
ferent models. Nevertheless, our experiences with Eclipse
as a common platform are encouraging.

We have currently provided concepts and a tool suite for

modeling variability. However, in order to take full advan-
tage of variability modeling, a derivation tool and quality
evaluation tools using the models are needed. Kumbang
Configurator [15] can be used to automate product deriva-
tion by checking completeness, consequences, and consis-
tency. Kumbang Configurator supports derivation based
on Kumbang models, but currently does not take into ac-
count quality attributes. On the one hand, it seems feasi-
ble to extend Kumbang Configurator to support quality at-
tributes during derivation; however, this requires further re-
search. On the other hand, the RAP [10] tool supports relia-
bility and availability prediction, but model transformation
between Kumbang Configurator and the RAP tool has not
been studied.

6. Conclusion

This paper introduced a new approach to modeling vari-
ability of software product families by combining func-
tional and quality attribute variability modeling. The con-
cepts have been defined as multiple ontologies with differ-
ent purposes: Kumbang ontology defines concepts for func-
tional variability, Quality Attribute ontologies define con-
cepts related to specific quality attributes, and Quality Vari-
ability ontology defines the meta-model for quality varia-
tion. The use of ontology orientation has enabled the de-
velopment of automated tool support, constructed on the
commonly used tooling platform Eclipse. The approach has
been tested for feasibility with a simple example. However,
more research is needed, especially for more complex sys-
tems and derivation support.
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Figure 6. Mapping quality properties to the architectural elements of the structural view.
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